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Abstract

Mammalian target of rapamycin (mTOR), a
serine/threonine protein kinase, regulates cellular
process such as growth, proliferation, motility and
survival which are mediated through regulating the
transcription and protein synthesis. mTOR is the
catalytic subunit of two structurally distinct
complexes. mTORC1–a master regulator of cell
growth and metabolism and mTORC2 is involved in
the cytoskeleton organization. Both these complexes
are localized to different sub-cellular compartments,
thus affecting their activation and function. Though
the mTOR signaling has physiological function in
cells, an elevated mTOR signaling has been found in
many human cancers. Since deregulation has been
observed in the mTOR signaling pathway,
overwhelming research on this complex machinery
has developed inhibitors to inhibit human cancer.
Some of them such as temsirolimus, everolimus, are
beginning to use in the treatment of cancer. Natural
inhibitors of mTOR are found to be effective in cell
cultures but none of them is proved to be effective in
clinical use. Hence, it will be noteworthy to discuss
the physiological importance as well as pathological
impact of this signal machinery. This review
discusses the physiological role of mTOR, its
regulation, involvement in human cancer and
pharmacological inhibitors for modulating mTOR
activity in cancer.
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Introduction

The mammalian target of rapamycin (mTOR)
complex (289-kDa) is a serine/threonine kinase of
the phosphatidylinositol kinase–related kinase
family which was identified in 1991[1]. This complex
is one of the important components involved in the
phosphatidylinositol 3-kinase (PI3K)/ Protein kinase
B (Akt) signal pathway and is highly conserved from
yeast to mammals [2]. Its major role is the integration
of signals originated from growth factors, hormones,
nutrients, stress, energy status and altering cellular
processes such as cell proliferation, cell motility, cell
survival, protein synthesis and transcription [2].
Structurally two distinct complexes, mammalian
TOR complex 1 (mTORC1) and mTORC2 are
localized in different sub-cellular compartments and
found to be associated with mTOR. mTORC1 and
mTORC2 exert their actions by regulating other
important kinases. Hence, these complexes are
central to the mediation of various extrinsic and
intrinsic signals. mTORC1 promotes glucose uptake
and flux through glycolysis, regulates lipid
synthesis, adipocyte differentiation and  inhibits
autophagy.

Significant advance in the regulation and
functions of mTOR in the past decade has revealed
the crucial involvement of this signaling pathway in
human diseases [3]. Involvement of mTOR in human
diseases is depicted in figure 1. Therefore, inhibitors
of mTOR are designed and directed against the onset
and progression of diseases such as diabetes, cancer,
alzheimer’s disease and obesity [4]. National
Institute on Aging Interventions Testing Program has
shown that pharmacologically reduced mTOR
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signaling with rapamycin increases median and
maximal lifespan in genetically heterogeneous mice
[5]. Inhibitors of mTOR in cancer are the major
research area that attracted attention during the last
decade. This review article discusses the
physiological role of mTOR, its regulation,
involvement in human cancer and pharmacological
inhibitors for modulating mTOR activity in cancer.

Cancers

Diabetes

Obesity AD

Depression

Huntington's disease

Fig. 1: Involvement of mammalian target of rapamycin
(mTOR) in the onset of diseases. AD: Alzheimer’s disease

Physiological role and regulation of mTOR signal
pathways

mTOR is associated with two distinct multi       -
protein complexes, mTORC1 and mTOR mTORC2.
mTORC1 complex functions as a nutrient/energy/
redox sensor and controlling protein synthesis [2].
There are five components of mTORC1complex: (1)
mTOR, which is the catalytic subunit; (2) regulatory-
associated protein of mTOR (Raptor); (3) mammalian
lethal with Sec13 protein 8 (mLST8, also known as
GâL [6]; (4) proline-rich AKT substrate 40 kDa
(PRAS40); and (5) DEP-domain-containing mTOR-
interacting protein (Deptor) [7]. The exact function
of most of the mTOR–interacting proteins in mTORC1
complex is still remains elusive. Raptor affects the
mTORC1 activity by regulating assembly of the
complex and by recruiting substrates for mTOR [8,
9]. The activity of mTORC1 is reduced when PRAS40
and Deptor are recruited to the complex. The activity
can also be reduced due to the inhibition of Rheb
which is mediated by tuberous sclerosis complex 2

Fig. 2: Role of various factors that contribute the activation of mTOR Complexes. GF, insulin and IGF1 stimulate the PI3K/
Akt pathway which in turn directly inactivate TSC1/TSC2 complex. This leads to the activation mTORC1. The activated
mTORC1 phosphorylate  S6K1 and 4EBP1, positively regulate the rate limiting step for translation. TNFá phosphorylates and
inhibits TSC1 thus activate mTORC1. Activation of complexes finally favors the biological response such as the overall cell
growth, survival and proliferation. AMPK inhibit the complex either directly or through TSC 1/2. mTOR C1/C2: Mammalian
target of rapamycin mTOR complex 1/2; GF: Growth factor; IGF1: Insulin-like growth factor 1; PI3K: phosphatidylinositol 3-
kinase; ERK1/2: extracellular-signal-regulated kinase1/2 (ERK1/2); Akt: Protein kinase B; TSC 1/2: Tuberous sclerosis
complex 1/2; RSK 1: Ribosomal S6 kinase; TNFá: Tumor necrosis factor-á; S6K1: p70 ribosomal S6 kinase 1; 4EBP1: Eukaryotic
initiation factor 4E-binding proteins; PTEN: Phosphatase and tensin homologue deleted on chromosome ten; AMPK: 5'
Adenosine monophosphate-activated protein kinase; IRS-1:Insulin receptor substrate 1.
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(TSC2) [8]. Many signals regulate mTORC1 through
TSC1/2 (Fig. 2). Growth factors, insulin and insulin-
like growth factor 1 (IGF1) stimulate the PI3K and
Ras pathways that resulted in the activation of the
effector kinases of these pathways such as protein
kinase B (Akt/PKB), extracellular-signal-regulated
kinase1/2 (ERK1/2), and ribosomal S6 kinase
(RSK1). Growth factors are mainly mediated their
action though pathways such as ERK 1/2, Wnt and
the glycogen synthase kinase 3b pathways [10, 11].
These kinases directly inactivate TSC1/TSC2
complex by phosphorylation and thus activate
mTORC1 [12–16]. Akt can activate mTORC1 in a
TSC1/2-independent fashion by phosphorylation to
dissociation of mTORC1 inhibitor from raptor of
PRAS40 [17–20]. Branched chain amino acids,
leucine increases intracellular calcium levels, thus
activating mTORC1 mediated through calcium/
calmodulin-dependent activation and involved in
the regulation of energy balance.

The activated mTORC1 positively regulate the
rate limit ing step for  translat ion by
phosphorylating p70 ribosomal S6 kinase 1 (S6K1)
and eukaryotic initiation factor 4E-binding
proteins (4EBP1). S6K1 in turn phosphorylates
number of downstream substrates including the
S6 ribosomal protein results in increased mRNA
biogenesis and cap-dependent translation and
elongation.  Among the proteins that  are
synthesized includes cyclin D1, hypoxia inducing
factor 1á, glucose transport protein 1(GLUT-1) and
glycolytic enzymes. mTORC1 positively regulates
lipid metabolism by activating the sterol regulatory
element binding protein 1/2 (SREBP 1/2) [21] and
peroxisome proliferator-activated receptor-ã in
adipocites [22]. SREBP in turn activate the
transcription of genes of lipogenesis pathway such
as synthesis of fatty acids, cholesterol etc.

Activation of mTORC1 found to inhibit autophagy
which is recognized as an adaptive rescue
mechanism for starving cells to conserve energy and
also to eradicate the damaged cellular material.
Activation of mTOR in presence of the growth factors
results in the shuttling of mTOR from cytoplasm to
lysosomes and subsequently inhibits the cell
autophagy. The Rag GTPases, in the presence of
sufficient amino acids–particularly leucine and
arginine mediate this lysosomal localization [23–25].
On the lysosomal surface, the Rag GTPases dock
mTORC1on Ragulator, a multisubunit complex [26].
mTORC1 directly phosphorylates and suppresses
kinases involved in the autophagy [27–29]. Hence,

for any upstream signals like originated from growth
factors these amino acids are found to be essential
for the activation of mTORC1. Therefore, upon amino
acid removal during starvation TSC2 is recruited by
the Rag GTPases to lysosomes and inhibit the mTOR
C1 [30, 31].

Pro-inflammatory cytokines such as tumor
necrosis factor-á (TNFá) phosphorylates and inhibits
TSC1 which is mediated by IkB kinase b [32]. A cell
growth regulator pathway initiated from Wnt
signaling also inhibits TSC2 activity results in the
activation of mTORC1 [33, 34]. Similarly, low energy
and DNA damage can mediate the regulation of
mTORC1 through TSC1/2. Furthermore, DNA
damage will activate the p53-dependent synthesis
of TSC2 and tensin homolog deleted on chromosome
10 (PTEN), causing down regulation of the entire
PI3K-mTORC1 axis [35, 36]. Phosphatidic acid
activates mTOR signaling at least in part by
stabilizing the mTOR complexes [36].

Factors such as stress (ROS), starvation and
exercise can inhibit the mTORC1 mediated by the 5'
Adenosine monophosphate-activated protein kinase
(AMPK). Inoki et al; demonstrated that mTORC1
activity is sensitive to ATP levels [38]. Hence, the
factors that lower the ATP level in the cell such as
hypoxia or stressors elevate the AMP and inhibit the
mTORC1 through AMPK. AMPK will activate TSC2
and furthermore phosphorylate and inhibit Raptor
[38, 39]. Starvation and stress can also mediate a
transcription dependent, via p53 and transcription
independent, by AMPK activation, mechanisms to
inhibit the mTORC1 complex.

The other complex of mTOR, mTORC2 comprises
six different proteins. Among the proteins Deptor
negatively regulates mTORC2 activity [40]. The role
of mTORC2 in various cellular processes has not
yet been fully elucidated. mTORC2 phosphorylates
the serine/threonine protein kinase Akt/PKB at
the serine residue S473 thus, affecting metabolism
and survival [41]. Phosphorylation of the serine
stimulates phosphoinositide dependent protein
kinase-1 mediated Akt phosphorylation at a
threonine T308 residue, leads to full Akt activation
(Fig. 3) [42, 43]. The activated Akt regulates several
downstream  kinases for the cellular processes
such as cell survival, proliferation,  growth and
apoptosis. Activation of one such kinases, PKC-á
regulates cell  shape by affecting the act in
cytoskeleton [44, 45]. Because of its role in
phosphorylating and activating Akt, mTORC2
forms a core component of the PI3K pathway.
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Role of mTOR in tumorigenesis
Since, growth factors can act onto mTORC1

through the multiple signaling pathways that over
activate mTORC1 can results in tumorigenesis [46].
Oncogenic protein mediated activation of mTOR
signaling induces several processes required for

Akt

mTORC2 ATP

PDK1

Serine

Akt

Threonine

GENE REGULATION

Fig. 3: Role of mTORC2 in the Akt activation. mTORC2
phosphorylates Akt at the serine residue for its full activation.
ATP: Adenosine triphosphate; PDK1: 3-phosphoinositide
dependent protein kinase-1,

Fig. 4: Role of Mammalian target of rapamycin (mTOR) in tumorigenesis.

cancer cell growth, survival and proliferation.
Activation of cellular oncogene and the subsequent
activation of mTOR signaling results in
uncontrolled processes such as growth, survival
and proliferat ion required for  malignant
transformation of cell (Fig. 4). Most of the proteins
that are increasingly synthesized in the cells can
contribute to abnormal proliferation of cells beyond
the physiological demand of the organ involved.
Among such proteins cell cycle regulators, growth
factors to favor angiogenesis  have been
demonstrated well. Increase in ribosome biogenesis
linked to mTOR activation probably promotes high
levels of cell growth and can partially explain the
mechanism behind the increased proteins.
Estrogen and androgens can allow the entry of
amino acid, leucine into the cells those results in
the activation of mTOR. Mutations in genes
encoding proteins that lie upstream of the mTOR
complexes, including p53, Pten, Tsc 1/2 and
neurofibromatosis type 1 or deregulation of protein
synthesis downstream of mTORC1 at the level of
4E-BP1/eIF4E can also contribute the uncontrolled
growth of poorly differentiated cells [47, 48].
Guertin et al; demonstrated the development of
prostate cancer in mice induced by the loss of the
tumor suppressor PTEN which requires mTORC2
function [48].  Further,  activated mTORC2
promotes cell survival [49].

Though the activated mTOR-raptor complex 1
(mTORC1) results to enhance protein synthesis in
many cell types, activation of mTORC1 strongly represses
the PI3K-AKT axis upstream of PI3K. Furthermore, the
activation of S6K1 by mTORC1 promotes the
phosphorylation of IRS1 and reduces its stability [50].

This auto-regulatory pathway, characterized as the
S6K1-dependent negative feedback loop, has been
shown to have profound implications for both metabolic
diseases and tumorigenesis [51]. Therefore, targeting the
mTOR complexes mainly mTORC1 will help to prevent
the progression of cell transformation.
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Inhibitors of mTOR used in cancer treatment
mTOR complexes are mainly useful for the

treatment of cancer and to lesser extent they may
also help in identifying predictors of response or
resistance. List of inhibitors used in the current
clinical trials and therapy are depicted in table 1.
Inhibition of mTORC1 and mTORC2 leads to
apoptosis; inhibition of mTORC2 alone by PP242
prevents phosphorylation of Ser-473 site on AKT
and arrests the cells in G1 phase of the cell cycle
[52]. Rapamycin is the first generation of mTOR
inhibitors targeted to mTORC1, but they do not
bind to mTORC2, which is mostly considered to be
rapamycin-insensitive [53]. Rapamycin can
enhance apoptosis and also increases sensitivity
to cisplatin in vitro [54]. However, targeting to only
mTORC1 with rapamycin analog leads to
increased signaling through upstream receptor
tyrosine kinases and increased Akt activation,
which promotes cell survival. Therefore, it has
been speculated that rapamycin analog alone has
limited clinical activity in cancer due to this
mechanism, as well as activation of parallel
signaling pathways. This limitation of rapamycin
analog has directed the development of alternate
methods of targeting the PI3K signaling pathway,
with either adenosine triphosphate (ATP)-
competitive mTOR inhibitors or by using dual
PI3K/mTOR inhibitors. Ongoing breast cancer
studies using ATP-competitive mTOR inhibitors
and dual PI3K/mTOR inhibitors are in clinical
trials. A few of the TOR inhibitors such as
temsirolimus and everolimus are beginning to be
used in the treatment of cancer [55].

mTOR ATP-competitive inhibitors which target
all known functions of mTORC1 as well as
mTORC2 can inhibit translation more potently.
Although PI3K over activation still occurs, Akt
phosphorylation by mTORC2 is impaired. Dual
PI3K/mTOR inhibitors block all functions of PI3K,
including PDK1- and mTORC2-mediated
activation of Akt. However, they might cause
increased toxicity. The adverse effect of inhibition
is that if phosphatidylinositol 3 kinase (PI3K) and
Akt are not activated, leading to decreased glucose
uptake and hence enhance the hepatic
gluconeogenesis ,  which in turn cause
hyperglycemia or even worsen the hyperglycaemia
in diabetes patients. The incidence rates of adverse
metabolic effects with either mTORC1 or dual
mTORC1/mTORC2 inhibitors have a wide range
from hyperglycemia (22–50%),
hypertr iglyceridemia (27–71%),  and
hypercholesterolemia (24–76%) [56]. Non-

infectious pneumonitis was reported among
advanced renal cell carcinoma patients treated
with everolimus [57]. Iacovelli et al; in a meta-
analysis reported the 10.4% incidence and risk of
pulmonary toxicity in patients treated with mTOR
inhibitors for malignancy [58].

Preclinical studies, using hormone receptor–
positive cancer cell lines, have demonstrated the
activation of PI3K/mTOR pathway after long-term
estrogen deprivation [59, 60]. This suggested as
one of the important mechanisms of acquired
endocrine resistance in hormone replacement
therapy. High Akt activity has been shown to
contribute to resistance to endocrine therapy as
well [61], which can be reversed by rapalogs [62,
63]. Therefore, anti-hormonal treatment for priming
of the PI3K pathway might be important in
sensitizing cancer cells to PI3K/mTOR inhibitors.
Rapalogs were synergistic with anti-estrogens,
including tamoxifen and letrozole for blocking
both pathways not only enhanced anti-tumor
activity but also Akt-induced endocrine therapy
resistance is reversed by inhibition of mTOR
signaling [62, 63]. Boulay et al. demonstrated that
dual inhibition of mTOR and estrogen receptor
signaling in vitro induces cell death in models of
breast cancer [64]. Treatment with mTOR inhibitors
is an effective strategy for overcoming preclinical
trastuzumab resistance secondary to PTEN loss
[65, 66]. Sirolimus (Rapamune), a rapamycin
analog has also been shown to inhibit the growth
of cancer cell lines and xenografts from different
tumor subtypes [67].

Temsirolimus was the first rapamycin analog
approved by the US Food and Drug Administration
(FDA) in 2007 for the treatment of advanced renal
cell cancer. With each of the three mTOR inhibitors
temsirolimus (CCI-779), everolimus (RAD001) and
deforolimus (AP23573), a safe schedule of
treatment has been defined and promising results
of anti-tumour activity have been achieved in a
variety of solid tumours, thus confirming the
preclinical expectations [68]. In a randomized
phase 2 study, everolimus in combination with
tamoxifen increased overall survival compared
with tamoxifen alone in postmenopausal women
with aromatase inhibitors resistant metastatic
breast cancer [69]. Various natural compounds,
including curcumin, resveratrol, epigallocatechin
gallate, and caffeine have also been reported to
inhibit mTOR when applied to isolated cells in
culture [70–73]. However, there is as yet no
evidence that these substances inhibit mTOR when
taken as dietary supplements.
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Conclusion

The mammalian target of rapamycin (mTOR) is a
serine/threonine kinase of the phosphatidylinositol
kinase-related kinase family. It regulates cell growth
process such as cell proliferation, cell motility. The
mTOR pathway is dysregulated in human diseases,
such as diabetes, obesity, depression, and certain
cancers. Activation of (S6K1) by mTORC1 promotes
the phosphorylation of serine residue in IRS1 and
reduces its stability. The S6K1–dependent negative
feedback loop has been shown to have profound
implications for both metabolic diseases and
tumorigenesis. mTOR inhibitors such as temsirolimus
and everolimus are beginning to be used in the
treatment of cancer. Inhibitors of mTOR signal
pathway are required as adjuvant to the conventional
chemotherapeutic agents. In patients with HER2–
positive, combinations of PI3K/mTOR inhibitors with
anti-HER2 therapies are encouraging. Various
combinations of dual PI3K/mTOR inhibitors and
other pathway inhibitors, such as MEK or IGF1R, are
being studied in clinical trials to either overcome loss
of feedback inhibition or PI3K activation. But the results
from larger studies are not available yet. Hence, further
research is warranted to rule out the potent therapeutic
application of mTOR inhibitors.
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